じっけんけいかくやの図書室から、Douglas C. Montgomery 「Design and Analysis of Experiments」をご紹介します。
こちらの本を紹介
¥14,400 (2025/07/21 07:30時点 | Amazon調べ)

ジャンル | 実験計画法 |
こんなひとにオススメ | 実験計画法をじっくり学びたいひと |
必要な前提知識 | 高校数学(Σや行列の計算) |
理論 or 実践 | 理論と実践を広くカバー |
内容の紹介
700ページを超える大ボリュームで実験計画法を網羅している名著です。統計学の基礎から始まり応答曲面法までたっぷり、じっくりと解説されています。
もちろん全編英語です。海外では主流の書籍だとか。(誰か日本語版をつくってほしい…)
第3章までを統計学の基礎である検定や推定、分散分析の説明に費やしており、第4章からいよいよ実験計画法の説明が始まります。
実験回数を削減していく方法の解説は第6章から始まり、日本スタイルの直交表(Orthogonal Array)という用語は現れず、一部実施要因計画(Fractional Factorial Design)として紹介されます。
数学の知識もそこまで必要ではないため、実験計画法を時間をかけてしっかり学びたい&英語でも抵抗がない、という人にオススメです。
ご注意
現在10th Editionまで出版されていますが、9th Edition以降は一部のChapterがオンラインコンテンツ限定となっており、Paperbackを購入しても印刷されていない状態になっているようです。
紙で読みたい!という方は8th Editionの購入をオススメします。
必要な前提知識
全体的に丁寧な解説が多いので高校レベルの数学(Σの計算や行列計算の方法)を理解できていれば問題なく読めると思います。
目次
- 1 Introduction
- 1.1 Strategy of Experimentation
- 1.2 Some Typical Applications of Experimental Design
- 1.3 Basic Principles
- 1.4 Guidelines for Designing Experiments
- 1.5 A Brief History of Statistical Design
- 1.6 Summary: Using Statistical Techniques in Experimentation
- 2 Simple Comparative Experiments
- 2.1 Introduction
- 2.2 Basic Statistical Concepts
- 2.3 Sampling and Sampling Distributions
- 2.4 Inferences About the Differences in Means, Randomized Designs
- 2.4.1 Hypothesis Testing
- 2.4.2 Confidence Intervals
- 2.4.3 Choice of Sample Size
- 2.4.4 The Case Where 𝜎21 ≠ 𝜎22
- 2.4.5 The Case Where 𝜎21 and 𝜎22 Are Known
- 2.4.6 Comparing a Single Mean to a Specified Value
- 2.4.7 Summary
- 2.5 Inferences About the Differences in Means, Paired Comparison Designs
- 2.5.1 The Paired Comparison Problem
- 2.5.2 Advantages of the Paired Comparison Design
- 2.6 Inferences About the Variances of Normal Distributions
- 3 Experiments with a Single Factor: The Analysis of Variance
- 3.1 An Example
- 3.2 The Analysis of Variance
- 3.3 Analysis of the Fixed Effects Model
- 3.3.1 Decomposition of the Total Sum of Squares
- 3.3.2 Statistical Analysis
- 3.3.3 Estimation of the Model Parameters
- 3.3.4 Unbalanced Data
- 3.4 Model Adequacy Checking
- 3.4.1 The Normality Assumption
- 3.4.2 Plot of Residuals in Time Sequence
- 3.4.3 Plot of Residuals Versus Fitted Values
- 3.4.4 Plots of Residuals Versus Other Variables
- 3.5 Practical Interpretation of Results
- 3.5.1 A Regression Model
- 3.5.2 Comparisons Among Treatment Means
- 3.5.3 Graphical Comparisons of Means
- 3.5.4 Contrasts
- 3.5.5 Orthogonal Contrasts
- 3.5.6 Scheffé’s Method for Comparing All Contrasts
- 3.5.7 Comparing Pairs of Treatment Means
- 3.5.8 Comparing Treatment Means with a Control
- 3.6 Sample Computer Output
- 3.7 Determining Sample Size
- 3.7.1 Operating Characteristic and Power Curves
- 3.7.2 Confidence Interval Estimation Method
- 3.8 Other Examples of Single-Factor Experiments
- 3.8.1 Chocolate and Cardiovascular Health
- 3.8.2 A Real Economy Application of a Designed Experiment
- 3.8.3 Discovering Dispersion Effects
- 3.9 The Random Effects Model
- 3.9.1 A Single Random Factor
- 3.9.2 Analysis of Variance for the Random Model
- 3.9.3 Estimating the Model Parameters
- 3.10 The Regression Approach to the Analysis of Variance
- 3.10.1 Least Squares Estimation of the Model Parameters
- 3.10.2 The General Regression Significance Test
- 3.11 Nonparametric Methods in the Analysis of Variance
- 3.11.1 The Kruskal–Wallis Test
- 3.11.2 General Comments on the Rank Transformation
- 4 Randomized Blocks, Latin Squares, and Related Designs
- 4.1 The Randomized Complete Block Design
- 4.1.1 Statistical Analysis of the RCBD
- 4.1.2 Model Adequacy Checking
- 4.1.3 Some Other Aspects of the Randomized Complete Block Design
- 4.1.4 Estimating Model Parameters and the General Regression Significance Test
- 4.2 The Latin Square Design
- 4.3 The Graeco-Latin Square Design
- 4.4 Balanced Incomplete Block Designs
- 4.4.1 Statistical Analysis of the BIBD
- 4.4.2 Least Squares Estimation of the Parameters
- 4.4.3 Recovery of Interblock Information in the BIBD
- 4.1 The Randomized Complete Block Design
- 5 Introduction to Factorial Designs
- 5.1 Basic Definitions and Principles
- 5.2 The Advantage of Factorials
- 5.3 The Two-Factor Factorial Design
- 5.3.1 An Example
- 5.3.2 Statistical Analysis of the Fixed Effects Model
- 5.3.3 Model Adequacy Checking
- 5.3.4 Estimating the Model Parameters
- 5.3.5 Choice of Sample Size
- 5.3.6 The Assumption of No Interaction in a Two-Factor Model
- 5.3.7 One Observation per Cell
- 5.4 The General Factorial Design
- 5.5 Fitting Response Curves and Surfaces
- 5.6 Blocking in a Factorial Design
- 6 The 2k Factorial Design
- 6.1 Introduction
- 6.2 The 22 Design
- 6.3 The 23 Design
- 6.4 The General 2k Design
- 6.5 A Single Replicate of the 2k Design
- 6.6 Additional Examples of Unreplicated 2k Designs
- 6.7 2k Designs are Optimal Designs
- 6.8 The Addition of Center Points to the 2k Design
- 6.9 Why We Work with Coded Design Variables
- 7 Blocking and Confounding in the 2k Factorial Design
- 7.1 Introduction
- 7.2 Blocking a Replicated 2k Factorial Design
- 7.3 Confounding in the 2k Factorial Design
- 7.4 Confounding the 2k Factorial Design in Two Blocks
- 7.5 Another Illustration of Why Blocking is Important
- 7.6 Confounding the 2k Factorial Design in Four Blocks
- 7.7 Confounding the 2k Factorial Design in 2p Blocks
- 7.8 Partial Confounding
- 8 Two-Level Fractional Factorial Designs
- 8.1 Introduction
- 8.2 The One-Half Fraction of the 2k Design
- 8.2.1 Definitions and Basic Principles
- 8.2.2 Design Resolution
- 8.2.3 Construction and Analysis of the One-Half Fraction
- 8.3 The One-Quarter Fraction of the 2k Design
- 8.4 The General 2k−pFractional Factorial Design
- 8.4.1 Choosing a Design
- 8.4.2 Analysis of 2k−pFractional Factorials
- 8.4.3 Blocking Fractional Factorials
- 8.5 Alias Structures in Fractional Factorials and Other Designs
- 8.6 Resolution III Designs
- 8.6.1 Constructing Resolution III Designs
- 8.6.2 Fold Over of Resolution III Fractions to Separate Aliased Effects
- 8.6.3 Plackett–Burman Designs
- 8.7 Resolution IV and V Designs
- 8.7.1 Resolution IV Designs
- 8.7.2 Sequential Experimentation with Resolution IV Designs
- 8.7.3 Resolution V Designs
- 8.8 Supersaturated Designs
- 8.9 Summary
- 9 Additional Design and Analysis Topics for Factorial and Fractional Factorial Designs
- 9.1 The 3k Factorial Design
- 9.1.1 Notation and Motivation for the 3k Design
- 9.1.2 The 32 Design
- 9.1.3 The 33 Design
- 9.1.4 The General 3k Design
- 9.2 Confounding in the 3k Factorial Design
- 9.2.1 The 3k Factorial Design in Three Blocks
- 9.2.2 The 3k Factorial Design in Nine Blocks
- 9.2.3 The 3k Factorial Design in 3p Blocks
- 9.3 Fractional Replication of the 3k Factorial Design
- 9.3.1 The One-Third Fraction of the 3k Factorial Design
- 9.3.2 Other 3k−pFractional Factorial Designs
- 9.4 Factorials with Mixed Levels
- 9.4.1 Factors at Two and Three Levels
- 9.4.2 Factors at Two and Four Levels
- 9.5 Nonregular Fractional Factorial Designs
- 9.5.1 Nonregular Fractional Factorial Designs for 6, 7, and 8 Factors in 16 Runs
- 9.5.2 Nonregular Fractional Factorial Designs for 9 Through 14 Factors in 16 Runs
- 9.5.3 Analysis of Nonregular Fractional Factorial Designs
- 9.6 Constructing Factorial and Fractional Factorial Designs Using an Optimal Design Tool
- 9.6.1 Design Optimality Criterion
- 9.6.2 Examples of Optimal Designs
- 9.6.3 Extensions of the Optimal Design Approach
- 9.1 The 3k Factorial Design
- 10 Fitting Regression Models
- 10.1 Introduction
- 10.2 Linear Regression Models
- 10.3 Estimation of the Parameters in Linear Regression Models
- 10.4 Hypothesis Testing in Multiple Regression
- 10.4.1 Test for Significance of Regression
- 10.4.2 Tests on Individual Regression Coefficients and Groups of Coefficients
- 10.5 Confidence Intervals in Multiple Regression
- 10.5.1 Confidence Intervals on the Individual Regression Coefficients
- 10.5.2 Confidence Interval on the Mean Response
- 10.6 Prediction of New Response Observations
- 10.7 Regression Model Diagnostics
- 10.7.1 Scaled Residuals and PRESS
- 10.7.2 Influence Diagnostics
- 10.8 Testing for Lack of Fit
- 11 Response Surface Methods and Designs
- 11.1 Introduction to Response Surface Methodology
- 11.2 The Method of Steepest Ascent
- 11.3 Analysis of a Second-Order Response Surface
- 11.3.1 Location of the Stationary Point
- 11.3.2 Characterizing the Response Surface
- 11.3.3 Ridge Systems
- 11.3.4 Multiple Responses
- 11.4 Experimental Designs for Fitting Response Surfaces
- 11.4.1 Designs for Fitting the First-Order Model
- 11.4.2 Designs for Fitting the Second-Order Model
- 11.4.3 Blocking in Response Surface Designs
- 11.4.4 Optimal Designs for Response Surfaces
- 11.5 Experiments with Computer Models
- 11.6 Mixture Experiments
- 11.7 Evolutionary Operation
- 12 Robust Parameter Design and Process Robustness Studies
- 12.1 Introduction
- 12.2 Crossed Array Designs
- 12.3 Analysis of the Crossed Array Design
- 12.4 Combined Array Designs and the Response Model Approach
- 12.5 Choice of Designs
- 13 Experiments with Random Factors
- 13.1 Random Effects Models
- 13.2 The Two-Factor Factorial with Random Factors
- 13.3 The Two-Factor Mixed Model
- 13.4 Rules for Expected Mean Squares
- 13.5 Approximate F-Tests
- 13.6 Some Additional Topics on Estimation of Variance Components
- 13.6.1 Approximate Confidence Intervals on Variance Components
- 13.6.2 The Modified Large-Sample Method
- 14 Nested and Split-Plot Designs
- 14.1 The Two-Stage Nested Design
- 14.1.1 Statistical Analysis
- 14.1.2 Diagnostic Checking
- 14.1.3 Variance Components
- 14.1.4 Staggered Nested Designs
- 14.2 The General m-Stage Nested Design
- 14.3 Designs with Both Nested and Factorial Factors
- 14.4 The Split-Plot Design
- 14.5 Other Variations of the Split-Plot Design
- 14.5.1 Split-Plot Designs with More Than Two Factors
- 14.5.2 The Split-Split-Plot Design
- 14.5.3 The Strip-Split-Plot Design
- 14.1 The Two-Stage Nested Design
- 15 Other Design and Analysis Topics (Available in e-text for students)
- Problems
- Appendix
- Table I. Cumulative Standard Normal Distribution
- Table II. Percentage Points of the t Distribution
- Table III. Percentage Points of the 𝜒 2 Distribution
- Table IV. Percentage Points of the F Distribution
- Table V. Percentage Points of the Studentized Range Statistic
- Table VI. Critical Values for Dunnett’s Test for Comparing Treatments with a Control
- Table VII. Coefficients of Orthogonal Polynomials
- Table VIII. Alias Relationships for 2k−pFractional Factorial Designs with k ≤ 15 and n ≤ 64
- OC Bibliography (Available in e-text for students)
- Index
¥14,400 (2025/07/21 07:30時点 | Amazon調べ)

更新履歴
2025/7/21 公開
コメント