Design and Analysis of Experiments

図書室

じっけんけいかくやの図書室から、Douglas C. Montgomery 「Design and Analysis of Experiments」をご紹介します。

こちらの本を紹介
¥14,400 (2025/07/21 07:30時点 | Amazon調べ)
ジャンル実験計画法
こんなひとにオススメ実験計画法をじっくり学びたいひと
必要な前提知識高校数学(Σや行列の計算)
理論 or 実践理論と実践を広くカバー

内容の紹介

700ページを超える大ボリュームで実験計画法を網羅している名著です。統計学の基礎から始まり応答曲面法までたっぷり、じっくりと解説されています。
もちろん全編英語です。海外では主流の書籍だとか。(誰か日本語版をつくってほしい…)

第3章までを統計学の基礎である検定や推定、分散分析の説明に費やしており、第4章からいよいよ実験計画法の説明が始まります。
実験回数を削減していく方法の解説は第6章から始まり、日本スタイルの直交表(Orthogonal Array)という用語は現れず、一部実施要因計画(Fractional Factorial Design)として紹介されます。

数学の知識もそこまで必要ではないため、実験計画法を時間をかけてしっかり学びたい&英語でも抵抗がない、という人にオススメです。

ご注意

現在10th Editionまで出版されていますが、9th Edition以降は一部のChapterがオンラインコンテンツ限定となっており、Paperbackを購入しても印刷されていない状態になっているようです。
紙で読みたい!という方は8th Editionの購入をオススメします。

必要な前提知識

全体的に丁寧な解説が多いので高校レベルの数学(Σの計算や行列計算の方法)を理解できていれば問題なく読めると思います。

目次

  • 1 Introduction
    • 1.1 Strategy of Experimentation
    • 1.2 Some Typical Applications of Experimental Design
    • 1.3 Basic Principles
    • 1.4 Guidelines for Designing Experiments
    • 1.5 A Brief History of Statistical Design
    • 1.6 Summary: Using Statistical Techniques in Experimentation
  • 2 Simple Comparative Experiments
    • 2.1 Introduction
    • 2.2 Basic Statistical Concepts
    • 2.3 Sampling and Sampling Distributions
    • 2.4 Inferences About the Differences in Means, Randomized Designs
      • 2.4.1 Hypothesis Testing
      • 2.4.2 Confidence Intervals
      • 2.4.3 Choice of Sample Size
      • 2.4.4 The Case Where 𝜎21 ≠ 𝜎22
      • 2.4.5 The Case Where 𝜎2and 𝜎2Are Known
      • 2.4.6 Comparing a Single Mean to a Specified Value
      • 2.4.7 Summary
    • 2.5 Inferences About the Differences in Means, Paired Comparison Designs
      • 2.5.1 The Paired Comparison Problem
      • 2.5.2 Advantages of the Paired Comparison Design
    • 2.6 Inferences About the Variances of Normal Distributions
  • 3 Experiments with a Single Factor: The Analysis of Variance
    • 3.1 An Example
    • 3.2 The Analysis of Variance
    • 3.3 Analysis of the Fixed Effects Model
      • 3.3.1 Decomposition of the Total Sum of Squares
      • 3.3.2 Statistical Analysis
      • 3.3.3 Estimation of the Model Parameters
      • 3.3.4 Unbalanced Data
    • 3.4 Model Adequacy Checking
      • 3.4.1 The Normality Assumption
      • 3.4.2 Plot of Residuals in Time Sequence
      • 3.4.3 Plot of Residuals Versus Fitted Values
      • 3.4.4 Plots of Residuals Versus Other Variables
    • 3.5 Practical Interpretation of Results
      • 3.5.1 A Regression Model
      • 3.5.2 Comparisons Among Treatment Means
      • 3.5.3 Graphical Comparisons of Means
      • 3.5.4 Contrasts
      • 3.5.5 Orthogonal Contrasts
      • 3.5.6 Scheffé’s Method for Comparing All Contrasts
      • 3.5.7 Comparing Pairs of Treatment Means
      • 3.5.8 Comparing Treatment Means with a Control
    • 3.6 Sample Computer Output
    • 3.7 Determining Sample Size
      • 3.7.1 Operating Characteristic and Power Curves
      • 3.7.2 Confidence Interval Estimation Method
    • 3.8 Other Examples of Single-Factor Experiments
      • 3.8.1 Chocolate and Cardiovascular Health
      • 3.8.2 A Real Economy Application of a Designed Experiment
      • 3.8.3 Discovering Dispersion Effects
    • 3.9 The Random Effects Model
      • 3.9.1 A Single Random Factor
      • 3.9.2 Analysis of Variance for the Random Model
      • 3.9.3 Estimating the Model Parameters
    • 3.10 The Regression Approach to the Analysis of Variance
      • 3.10.1 Least Squares Estimation of the Model Parameters
      • 3.10.2 The General Regression Significance Test
    • 3.11 Nonparametric Methods in the Analysis of Variance
      • 3.11.1 The Kruskal–Wallis Test
      • 3.11.2 General Comments on the Rank Transformation
  • 4 Randomized Blocks, Latin Squares, and Related Designs
    • 4.1 The Randomized Complete Block Design
      • 4.1.1 Statistical Analysis of the RCBD
      • 4.1.2 Model Adequacy Checking
      • 4.1.3 Some Other Aspects of the Randomized Complete Block Design
      • 4.1.4 Estimating Model Parameters and the General Regression Significance Test
    • 4.2 The Latin Square Design
    • 4.3 The Graeco-Latin Square Design
    • 4.4 Balanced Incomplete Block Designs
      • 4.4.1 Statistical Analysis of the BIBD
      • 4.4.2 Least Squares Estimation of the Parameters
      • 4.4.3 Recovery of Interblock Information in the BIBD
  • 5 Introduction to Factorial Designs
    • 5.1 Basic Definitions and Principles
    • 5.2 The Advantage of Factorials
    • 5.3 The Two-Factor Factorial Design
      • 5.3.1 An Example
      • 5.3.2 Statistical Analysis of the Fixed Effects Model
      • 5.3.3 Model Adequacy Checking
      • 5.3.4 Estimating the Model Parameters
      • 5.3.5 Choice of Sample Size
      • 5.3.6 The Assumption of No Interaction in a Two-Factor Model
      • 5.3.7 One Observation per Cell
    • 5.4 The General Factorial Design
    • 5.5 Fitting Response Curves and Surfaces
    • 5.6 Blocking in a Factorial Design
  • 6 The 2k Factorial Design
    • 6.1 Introduction
    • 6.2 The 22 Design
    • 6.3 The 23 Design
    • 6.4 The General 2k Design
    • 6.5 A Single Replicate of the 2k Design
    • 6.6 Additional Examples of Unreplicated 2k Designs
    • 6.7 2k Designs are Optimal Designs
    • 6.8 The Addition of Center Points to the 2k Design
    • 6.9 Why We Work with Coded Design Variables
  • 7 Blocking and Confounding in the 2k Factorial Design
    • 7.1 Introduction
    • 7.2 Blocking a Replicated 2k Factorial Design
    • 7.3 Confounding in the 2k Factorial Design
    • 7.4 Confounding the 2Factorial Design in Two Blocks
    • 7.5 Another Illustration of Why Blocking is Important
    • 7.6 Confounding the 2k Factorial Design in Four Blocks
    • 7.7 Confounding the 2k Factorial Design in 2p Blocks
    • 7.8 Partial Confounding
  • 8 Two-Level Fractional Factorial Designs
    • 8.1 Introduction
    • 8.2 The One-Half Fraction of the 2k Design
      • 8.2.1 Definitions and Basic Principles
      • 8.2.2 Design Resolution
      • 8.2.3 Construction and Analysis of the One-Half Fraction
    • 8.3 The One-Quarter Fraction of the 2k Design
    • 8.4 The General 2kpFractional Factorial Design
      • 8.4.1 Choosing a Design
      • 8.4.2 Analysis of 2kpFractional Factorials
      • 8.4.3 Blocking Fractional Factorials
    • 8.5 Alias Structures in Fractional Factorials and Other Designs
    • 8.6 Resolution III Designs
      • 8.6.1 Constructing Resolution III Designs
      • 8.6.2 Fold Over of Resolution III Fractions to Separate Aliased Effects
      • 8.6.3 Plackett–Burman Designs
    • 8.7 Resolution IV and V Designs
      • 8.7.1 Resolution IV Designs
      • 8.7.2 Sequential Experimentation with Resolution IV Designs
      • 8.7.3 Resolution V Designs
    • 8.8 Supersaturated Designs
    • 8.9 Summary
  • 9 Additional Design and Analysis Topics for Factorial and Fractional Factorial Designs
    • 9.1 The 3k Factorial Design
      • 9.1.1 Notation and Motivation for the 3k Design
      • 9.1.2 The 32 Design
      • 9.1.3 The 33 Design
      • 9.1.4 The General 3k Design
    • 9.2 Confounding in the 3k Factorial Design
      • 9.2.1 The 3k Factorial Design in Three Blocks
      • 9.2.2 The 3k Factorial Design in Nine Blocks
      • 9.2.3 The 3k Factorial Design in 3p Blocks
    • 9.3 Fractional Replication of the 3k Factorial Design
      • 9.3.1 The One-Third Fraction of the 3k Factorial Design
      • 9.3.2 Other 3kpFractional Factorial Designs
    • 9.4 Factorials with Mixed Levels
      • 9.4.1 Factors at Two and Three Levels
      • 9.4.2 Factors at Two and Four Levels
    • 9.5 Nonregular Fractional Factorial Designs
      • 9.5.1 Nonregular Fractional Factorial Designs for 6, 7, and 8 Factors in 16 Runs
      • 9.5.2 Nonregular Fractional Factorial Designs for 9 Through 14 Factors in 16 Runs
      • 9.5.3 Analysis of Nonregular Fractional Factorial Designs
    • 9.6 Constructing Factorial and Fractional Factorial Designs Using an Optimal Design Tool
      • 9.6.1 Design Optimality Criterion
      • 9.6.2 Examples of Optimal Designs
      • 9.6.3 Extensions of the Optimal Design Approach
  • 10 Fitting Regression Models
    • 10.1 Introduction
    • 10.2 Linear Regression Models
    • 10.3 Estimation of the Parameters in Linear Regression Models
    • 10.4 Hypothesis Testing in Multiple Regression
      • 10.4.1 Test for Significance of Regression
      • 10.4.2 Tests on Individual Regression Coefficients and Groups of Coefficients
    • 10.5 Confidence Intervals in Multiple Regression
      • 10.5.1 Confidence Intervals on the Individual Regression Coefficients
      • 10.5.2 Confidence Interval on the Mean Response
    • 10.6 Prediction of New Response Observations
    • 10.7 Regression Model Diagnostics
      • 10.7.1 Scaled Residuals and PRESS
      • 10.7.2 Influence Diagnostics
    • 10.8 Testing for Lack of Fit
  • 11 Response Surface Methods and Designs
    • 11.1 Introduction to Response Surface Methodology
    • 11.2 The Method of Steepest Ascent
    • 11.3 Analysis of a Second-Order Response Surface
      • 11.3.1 Location of the Stationary Point
      • 11.3.2 Characterizing the Response Surface
      • 11.3.3 Ridge Systems
      • 11.3.4 Multiple Responses
    • 11.4 Experimental Designs for Fitting Response Surfaces
      • 11.4.1 Designs for Fitting the First-Order Model
      • 11.4.2 Designs for Fitting the Second-Order Model
      • 11.4.3 Blocking in Response Surface Designs
      • 11.4.4 Optimal Designs for Response Surfaces
    • 11.5 Experiments with Computer Models
    • 11.6 Mixture Experiments
    • 11.7 Evolutionary Operation
  • 12 Robust Parameter Design and Process Robustness Studies
    • 12.1 Introduction
    • 12.2 Crossed Array Designs
    • 12.3 Analysis of the Crossed Array Design
    • 12.4 Combined Array Designs and the Response Model Approach
    • 12.5 Choice of Designs
  • 13 Experiments with Random Factors
    • 13.1 Random Effects Models
    • 13.2 The Two-Factor Factorial with Random Factors
    • 13.3 The Two-Factor Mixed Model
    • 13.4 Rules for Expected Mean Squares
    • 13.5 Approximate F-Tests
    • 13.6 Some Additional Topics on Estimation of Variance Components
      • 13.6.1 Approximate Confidence Intervals on Variance Components
      • 13.6.2 The Modified Large-Sample Method
  • 14 Nested and Split-Plot Designs
    • 14.1 The Two-Stage Nested Design
      • 14.1.1 Statistical Analysis
      • 14.1.2 Diagnostic Checking
      • 14.1.3 Variance Components
      • 14.1.4 Staggered Nested Designs
    • 14.2 The General m-Stage Nested Design
    • 14.3 Designs with Both Nested and Factorial Factors
    • 14.4 The Split-Plot Design
    • 14.5 Other Variations of the Split-Plot Design
      • 14.5.1 Split-Plot Designs with More Than Two Factors
      • 14.5.2 The Split-Split-Plot Design
      • 14.5.3 The Strip-Split-Plot Design
  • 15 Other Design and Analysis Topics (Available in e-text for students)
    • Problems
    • Appendix
    • Table I. Cumulative Standard Normal Distribution
    • Table II. Percentage Points of the Distribution
    • Table III. Percentage Points of the 𝜒 2 Distribution
    • Table IV. Percentage Points of the Distribution
    • Table V. Percentage Points of the Studentized Range Statistic
    • Table VI. Critical Values for Dunnett’s Test for Comparing Treatments with a Control
    • Table VII. Coefficients of Orthogonal Polynomials
    • Table VIII. Alias Relationships for 2kpFractional Factorial Designs with ≤ 15 and ≤ 64
    • OC Bibliography (Available in e-text for students)
    • Index
¥14,400 (2025/07/21 07:30時点 | Amazon調べ)

更新履歴

2025/7/21 公開

フォローしてね!
こたぬき

【実験計画法をわかりやすく解説】
主に理系の学生・研究者・技術者向け。
フォローすると実験が効率的になって成果につながるはず…!
・大手化学メーカー勤務(技術開発職)
・社内で統計学講師(5年間で約300人に指導)
・QC検定1級

Xのフォローはこちらから↓

こたぬきをフォローする
図書室実験計画法
シェアする
スポンサーリンク

コメント

タイトルとURLをコピーしました